Importance sampling with the generalized exponential power density

نویسندگان

  • Alain Desgagné
  • Jean-François Angers
چکیده

In this paper, the generalized exponential power (GEP) density is proposed as an importance function in Monte Carlo simulations in the context of estimation of posterior moments of a location parameter. This density is divided in five classes according to its tail behaviour which may be exponential, polynomial or logarithmic. The notion of p-credence is also defined to characterize and to order the tails of a large class of symmetric densities by comparing their tails to those of the GEP density. The choice of the GEP density as an importance function allows us to obtain reliable and effective results when p-credences of the prior and the likelihood are defined, even if there are conflicting sources of information. Characterization of the posterior tails using p-credence can be done. Hence, it is possible to choose parameters of the GEP density in order to have an importance function with slightly heavier tails than the posterior. Simulation of observations from the GEP density is also addressed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Bivariate Generalized Exponential-Power Series Class of Distributions

In this paper, we introduce a new class of bivariate distributions by compounding the bivariate generalized exponential and power-series distributions. This new class contains the bivariate generalized exponential-Poisson, bivariate generalized exponential-logarithmic, bivariate generalized exponential-binomial and bivariate generalized exponential-negative binomial distributions as specia...

متن کامل

Classical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data

Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not...

متن کامل

On Exponential Power Distribution And Poultry Feeds Data: A Case Study

Abstract. In this paper, we propose to study a generalized form of the exponential power distribution which contains others in the literature as special cases. This unifying exponential power distribution is characterized by a parameter ω and a function h(ω) which regulates the tail behavior of the distribution, thus making it more flexible and suitable for modeling than the usual normal di...

متن کامل

Higher moments portfolio Optimization with unequal weights based on Generalized Capital Asset pricing model with independent and identically asymmetric Power Distribution

The main criterion in investment decisions is to maximize the investors utility. Traditional capital asset pricing models cannot be used when asset returns do not follow a normal distribution. For this reason, we use capital asset pricing model with independent and identically asymmetric power distributed (CAPM-IIAPD) and capital asset pricing model with asymmetric independent and identically a...

متن کامل

Bounded Relative Error Importance Sampling and Rare Event Simulation

We consider estimating tail events using exponential families of importance sampling distributions and show that under mild conditions on the exponential family we can achieve bounded relative error. Keywords: rare event simulation, relative error, g&h distribution, Monte Carlo methods, Importance sampling, Cross-entropy, Rényi Divergence. 1 Introduction Suppose X is a random variable with cumu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics and Computing

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2005